
Exploiting Traceability Uncertainty between Architectural Models and Code

Achraf Ghabi

Johannes Kepler University (JKU)

Linz, Austria

achraf.ghabi@jku.at

Alexander Egyed

Johannes Kepler University (JKU)

Linz, Austria

alexander.egyed@jku.at

Abstract—Documenting and maintaining the traceability

between architectural models and code is one of the foremost

challenges of model-based software development. Yet,

traceability is rarely captured immediately while models and

code co-evolve but usually recovered later. By then key people

may have moved on or their recollection of facts may be

blurred or inconsistent. In previous work, we proposed a

language for capturing traceability that allows for uncertainty

and incompleteness. This paper investigates this language on

the unique properties that characterize model-to-code

traceability. Our approach takes ambiguous, incomplete, and

possibly incorrect assumptions about the traceability between

model and code as input. It then validates the correctness of

these assumptions and completes the input by inserting their

logical consequences. This paper demonstrates the correctness

and scalability of our approach which has been validated on

several third-party software systems. Our approach is

automated and fully tool supported.

Keywords-traceability, model to code mapping, analysis

I. INTRODUCTION

Traceability is needed for both model and code
understanding [21]; and it is vital for change impact analysis
during maintenance [5]. Good tool support exists for
recording traces, however, less so for understanding the
relationship between architectural artifacts and code.
Traceability is typically captured manually in form of trace
matrices that cross-reference model elements and pieces of
code (i.e., their classes or methods). The engineers’ job is to
fill in the fields of the matrix by deciding for each model
element and piece of code separately whether or not the
piece of code implements the model element (n*m problem).
Each decision is not trivial and there are many such
decisions. Consider, for example, the ArgoUML system [36]
(one of our study systems) with hundreds of model elements
and tens of thousands of Java methods. A complete
traceability matrix for the ArgoUML requires millions of
decisions; one for every model element/Java method pair.
The scalability implication is daunting [3]. And the
traceability, once established, must be updated when the
model and code change for it to remain consistent and useful
[6]. Unfortunately, key personnel may have moved on or
may not remember vital details. The engineers’ knowledge
on the model to code traces is likely to be outdated or
incomplete and becomes worse over time [20].

This paper emphasizes on architectural model-to-code
traceability for architecture elements which are realized in
the code. It is important to note that architectural models

may address both the problem and solution domain. This
work thus focuses only on those parts of the architectural
model that are realized as code. Here, architectural model-
to-code traceability suffers from the general problem that
traceability is rarely captured immediately while models and
code co-evolve but usually recovered later. By then key
people may have moved on or their recollection of facts may
be blurred or inconsistent. This requires special language
constructs to express uncertainty and incompleteness which
current state-of-the-art in traceability does not do.
Architectural model-to-code traceability, however, also
suffers from a misconception, often implied in literature,
where each piece of code (e.g., method or class) belongs
uniquely to one architectural element only. The property of
uniqueness is much more subtle. On one hand, there could be
multiple architectural perspectives (i.e., models) for a
software system (e.g., a structural one in form of a
component diagram and a behavioral one in form of a
statechart diagram). Here it is quite reasonable to assume that
a given piece of code implements both the structure and the
behavior – hence it implements multiple architectural
elements. However, even in context of a single architectural
perspective (e.g., a component diagram), uniqueness is a
tricky property because on the code level it is quite
reasonable to assume that code is either reused among
components or directly referenced (e.g., the data models two
components share if they are to communicate).

This paper adopts the traceability language for model-to-
model traceability via code introduced in [16] and extends it
for architectural models-to-code traceability considering
some of the unique aspects of this domain and also providing
a more effective data structure for capturing and maintaining
traceability information. Our proposed approach allows
traceability to be captured incomplete and it may contain
typical uncertainties. An example of such a traceability
uncertainty is that the engineer knows that some given piece
of code may implement an architectural element; however,
not whether this piece of code also implements other
architectural elements; or whether other pieces of code also
implement this architectural element. It would be wrong for a
trace capture tool to force a precise input from the engineer
in the face of such uncertainties.

The main benefit of our approach is that it allows the
engineer to express traceability to the level of detail
(completeness and/or certainty) he or she is comfortable
with. This is contrary to existing techniques for trace capture,
usually relying on trace matrices, where an engineer must
express for each architectural model element and piece of
code whether there is or there is no traceability. We believe

that our language is most useful for situations where multiple
engineers collaborate such that each engineer provides
individual input about traceability (incomplete and/or with
uncertainties); yet, the combinations of this input allows for
more precise and complete reasoning. Indeed, we will
demonstrate that it is possible to automatically reduce, even
resolve, the incompleteness and uncertainties by
automatically inserting logical consequences of the
engineers’ input. And we will demonstrate that it is possible
to automatically identify incorrectness where the input
provides contradictory facts (it is often not trivial to
recognize incorrectness). Finally, we will discuss
correctness, scalability, and effectiveness on lessons we have
learned from four case studies.

II. ILLUSTRATION

We use an illustration throughout this. While simple, this
illustration allows us to address many of the uncertainty and
incompleteness issues that characterize model-to-code
traceability. The illustration in Figure 1 depicts a state
transition diagram with four model elements {select, play,
playing, stop} and five pieces of code – labeled by their short
acronyms {A,B,C,D,E} (i.e., A could stand for a class or a
method). This statechart diagram describes the behavior of a
movie player [12]. The movie player supports stop and play
transitions to/from the playing state. Selecting a new movie
automatically starts the playing of the movie.

playing

select

stop

play

Figure 1. Illustration of State Transition Model

III. RELATIONSHIPS BETWEEN MODEL AND CODE

While it is becoming more common that developers
create and use architectural descriptions, it is still not
common to document where exactly a each architectural
element is implemented in the source code. Knowing about
traceability is important for code understanding and
understanding the impact of a change (e.g., if a part of the
architecture changes). The goal of this work is to help the
engineer explore this relationship between model and code.

We refer to a piece of source code as a code element
where the granularity of the code element is entirely user-
definable. A code element could be a line of code, a method,
a class, a package, or any other logical grouping (e.g.,
architectural component). We will discuss the implications
of different granularity choices later. We presume that the
code elements are disjoint in that every line of code must
belong to at most one code element.

We refer to pieces of models (e.g., components, states,
transitions) as model elements. is bidirectional. On the one
side, we expect that a single model element is implemented
in multiple code elements (one-to-many mapping) because
model elements are typically higher-level descriptions of the
implementation of the system and hence require arbitrary

larger amounts of code to implement them. However, as was
discussed in the introduction, this is not to say that each code
element implements a single architectural model element
only. It is possible that a given code element does implement
a single model element only (uniqueness) but it is also
possible that a given code element implements multiple
model elements. Moreover, it is not always correct to assume
that every code element must implement a model element.
This assumption is true only if the model describes the entire
software system. Models can be incomplete; either by choice
or by omission and thus, a code element could also be not
implementing any model elements.

Many kinds of architectural models exist. The above
illustration is an example of a behavioral model but there are
also structural models (e.g., component diagrams), usage
scenarios and others. Thus models provide independent
perspectives onto a software system – we speak of multiple
perspectives or views [2, 20, 32]. Each perspective describes
the software system from a different point of view. For
example, the requirements perspective describes the software
system independently from the component structure or the
behavior (e.g., Figure 1). Perspectives may be at different
levels of abstractions or variations at the same level of
abstraction (i.e., separating the structure from the behavior).
A code element may thus implement multiple model
elements of different perspectives. Here the code element
may be uniquely implementing a single model element
within any given perspective.

While the model elements of different perspectives are
independent, the model elements within a single perspective
could be complementary. For example, in a component
diagram, each component is expected to contribute a unique
capability to the software system that is not being
contributed by any other component of the same component
diagram. The correctness of this is obvious through negation:
if two distinct components of a diagram contribute the exact
same then why are they different? In [16], we had assumed
that every model element in a perspective must be
implemented by some unique code. While this is true, it is at
times hard (if not impossible) to separate the unique code
pieces into separate code elements because of:

 interwoven features: different capabilities that are
implemented in close proximity in the source code and
thus always used together (e.g., a bank transaction
feature interwoven with a logging feature)

 common functionality: a piece of code that provides
application-specific services for different purposes (e.g.,
playing a movie which is invoked by both selecting a
movie and un-pausing it).

IV. LANGUAGE FOR EXPRESSING TRACEABILITY

A. Defining Precise Trace Information

Existing state-of-the-art requires precise traceability
information which is captured in form of a trace matrix. In
our domain, such a trace matrix would identify the
architectural model elements and code elements at a level of
detail defined by the engineer. The traceability between a

model element m and a code element c would then be
defined either as a trace(m, c) indicating that c is
implementing m; or as a no-trace(m, c) indicating that c does
not implement m. Establishing such traceability information
requires a precise knowledge about each code element and
model element individually. In addition to the high effort that
this task demands, it is also potentially error-prone due to the
large amount of precise knowledge needed (trace matrix has
the size=#code element * #model elements). Individual
engineers typically only have such precise knowledge (i.e.
expertise) on parts of a system in which they have been
personally involved with; or the parts of the architecture.
Therefore their knowledge about the remaining system
would be more imprecise and uncertain.

B. Expressing Uncertainty

In [16] we introduced a flexible language for defining
hypotheses on how model elements are related to code
elements and/or tests. This language recognizes that an
engineer may understand some model-to-code relationships
even though there may be uncertainties. The language

allowed the engineer to express the certainties without
having to make (wrong) assumptions about the
uncertainties. Two levels of uncertainties are supported by
the language:

 Uncertainty through the Grouping of Elements:
Engineers may know well the role of groups of model
and/or code elements but they may not understand them
individually. For example, one may know that the
selection and subsequent playing {select, playing} of a
movie is implemented in code elements {A, B, C}. Yet,
one may not know which code elements belong to
{select} or {playing} individually because they are
implemented together.

 Uncertainty in the Exact Scope of a Trace: Engineers
may be uncertain whether a given set of code elements
implements a model element completely. Or they may
be certain that the implementation is buried inside some
code without knowing exactly where. The language
allowed the engineer to qualify the model-to-code
relationships through implAtLeast, implAtMost, and
other constructs discussed later (see Section D).

C. Defining Basic Uncertainty

Each of the uncertainty constructs builds a relationship
between a set of model elements and a set of code elements.
Each of them should contain at least one element (i.e.
relationships to/from empty set are not allowed). The
construct is defined as {m*} relationship {c*} where {m*} is
the set of model elements and {c*} is the set of code
elements. The star symbol (*) in this notation expresses
multiplicity in that m* stands for multiple model elements
and c* for multiple code elements. The relationship term
declares how the first set is related to the second one. We
distinguish between four major relationships: implAtLeast,
implAtMost, implExactly, and implNot. Such input expresses
implementation of code but leaves a range of issues
unspecified:

1) an individual code element in {c*} may or may not be
implementing any model element in m*.

2) the model elements in {m*} may be implemented by
code other than {c*} (denoted as C-{c*} where C is the
set of all code elements).

3) other model elements within the same modeling
perspective (denoted as P-{m*} where P is the set of
model elements in perspective) may be implemented by
code in {c*}.

This basic language is sufficient to express arbitrary
complex model-to-code relationships. Depending on the
nature of the relationship, the proposed constructs hint a
relationship between single model elements from {m*} and
the given code elements in {c*} and/or between single code
elements from {c*} and the given model elements in {m*}.
Therefore, we declare logical units to express these
relationships: on the one side, the code element group (CEG)
is a group bundling one model element with a set of code
elements, e.g., ceg(play, {B,C}) expresses that the model
element play is implemented by B, C, or both; on the other
side, the model element group (MEG) is a group bundling
one code element with a set of model elements, e.g., meg(C,
{select, playing}) expresses that the code element C is
implementing select, playing, or both.

D. Defining Common Uncertainty Constructs

Human input on traceability is a mixture of certainties
and uncertainties. It is straightforward to reason about the
certainties. They are facts in a reasoning engine. It is more
challenging to reason about uncertainties. Uncertainties
provide a more flexible means for establishing input.
However, uncertainties must be expressed as constraints on
facts which require us to formalize these constraints and their
logical consequences. This section discusses these logical
consequences of uncertainties which are useful for assessing
correctness and completeness of traceability and for better
understanding trace granularity.

1) ImplAtLeast Input:
The input {m*} implAtLeast {c*} defines that the model
elements in {m*} are implemented by all of the code
elements in {c*} and possibly more. This input has a
correctness constraint ensuring that every code element in c*
individually must be implementing a subset of m*.

In the context of implAtLeast construct we derive a CEG
for each of the model elements and a MEG for each of the
code elements as follows:

forall m: implAtLeast.{m*}

 add ceg(m, implAtLeast.{c*})

forall c: implAtLeast.{c*}

 add meg(c, implAtLeast.{m*})

For example, let us consider the following input example:
Input 1: {select,playing} implAtLeast {A,C}

Each model element must be implemented by A and/or C.
And each code element must be implementing select and/or
playing. The corresponding MEGs and CEGs are:
 meg (A, {select, playing}) and meg(C, {select,

playing})

 ceg(select, {A, C}) and ceg(playing, {A, C})

The MEGs describe a relationship between a single code
element and multiple model elements. For example, meg(A,

{select, playing}) implies that code A must either
implement the model elements select or playing. The “or”
operator is a logical “or”, implying that A may implement
either select or playing or both select and playing. The
CEGs describe a relationship between a single model
element and multiple code elements. For example,
ceg(select, {A, C}) implies that the model element

select must be implemented in either A or C or A and C
(logical “or” again). Note that this input expresses the
certainty that each model element in {c*} must be
implementing a subset of {m*}. But it also has uncertainties
(2) and (3) above (e.g,. code “A” may implement any subset
of model elements {select, playing}).

2) ImplAtMost Input:
The input {m*} implAtMost {c*} defines that the model

elements in {m*} are implemented by some of the code
elements in {c*} but certainly not more. This input has
uncertainties (1) and (3) above. But it expresses the certainty
that every other code element not in {c*} must not
implement any model element in {m*}. It is important to
understand what code elements are not implementing a
model element because knowing that a code element is
implementing a model element does not imply that it cannot
be implementing another model element of the same
perspective (shared code).

forall m:implAtMost.{m*} & c:C-implAtMost.{c*}

 add no-trace(m, c)

forall m: implAtMost.{m*}

 add ceg(m, implAtMost.{c*})

This input has a correctness constraint of the same nature
discussed above and it has another correctness constraint in
that there must not exist a code element that implements and
does not implement the same model element.

 For example, if {stop} implAtMost {C,D} then stop
may not be implemented by code other than C or D:
 ceg(stop, {C,D})

 Certainties: no-trace(stop, A); no-trace(stop, B);
no-trace(stop, E)

3) ImplNot Input:
The input {m*} implNot {c*} defines that the model

elements in {m*} are not implemented by any of the code
elements in {c*}. This input is a negation of the implAtMost
input because {m*} is not implemented by {c*} implies that
{m*} must implAtMost C-{c*} (the remaining code). But
still, it is not legitimate to assume the implAtMost input as
long as it has not been explicitly defined by the engineer.
Furthermore, there is no need to derive MEG or CEG in the
context of implNot construct. We could, however, generate
precise traceability information indicating a no-trace between
each model element in {m*} and each code element in {c*}.

forall m:implNot.{m*} & c:implNot.{c*}

 add no-trace(m, c)

4) ImplExactly Input
The input {m*} implExactly {c*} defines that every code

element in {c*} implements one or more model elements in
{m*} and that the model elements in {m*} are not

implemented in any other code (C-{c*}), which allows us to
define no-trace between each model element in {m*} and
each code element in C-{c*}. We can also safely state that
each code element in {c*} implements a subset of {m*}. But
this does not mean that these code elements could not
implement other model elements (P-{m*}) – uncertainty (3)
above. This input has correctness constraints similar to the
ones above and allows us to generate MEGs and CEG as
previously discussed:

forall m:implExactly.{m*} & c:C-implExactly.{c*}

 add no-trace(m, c)

forall m:implExactly.{m*}

 add ceg(m, implExactly.{c*})

forall c:implExactly.{c*}

 add meg(c, implExactly.{m*})

For example, if {play, playing} implExactly {B,C}
then we can generate two MEGs and two CEGs (e.g,. neither
play nor playing may be implemented by code other than B
or C). The implExactly input also implies a few certainties,
such as no-trace(play, A) because if play must be
implemented within B and C:

 meg(B,{play,playing});meg(C,{play, playing})

 ceg(play, {B,C}); ceg(playing, {B,C})

 Certainties: no-trace(play, A); no-trace(playing,

A); no-trace(play, D); no-trace(playing, D);

no-trace(play, E); no-trace(playing, E)

E. Footprint Graph

We capture both facts and constraints (certainties and
uncertainties) in a graph structure, which we call the
footprint graph. The graph contains a node for every code
element (called CE nodes) and a node for each model
element (called ME nodes). The connections between these
nodes describe the certainties of the input (trace or no-trace)
– and the certainties that are generated out of the logical
consequences of the uncertainties. E.g., a trace(m, c) is
depicted by a continues line between the ME node of m and
the CE node of c. Analogically, no-traces are depicted by
dashed lines. Furthermore, the graph contains nodes to
capture model element groups (MEG nodes) and code
element groups (CEG nodes). These two kinds of nodes
describe the uncertainties of the input. The correctness
constraints are inferred from these nodes. Note that the
footprint graph in this paper is quite different from the same
named graph in [16] which is due to the need to
accommodate four different kinds of nodes compared to a
single kind earlier.

Input 1: {select, playing} implAtLeast {A,C}

Input 2: {play, playing} implExactly {B,C}

Input 3: {stop} implAtMost {C,D}

For the simple illustration discussed in Section 2 and the
three inputs discussed previously, Figure 2 depicts the nodes
for all three inputs in a single graph structure – the footprint
graph. The middle two columns depict the code elements
(CE nodes) for A, B, C, D, and E; and the model elements
(ME nodes) for select, playing, play, and stop. The left
column depicts the model element groups (MEG) by
connecting each set of model elements to the corresponding
code element, and the right column depicts the code element

groups (CEG) by connecting each set of code elements to the
corresponding model element. This graph structure depicts
the certainties as connections between CE and ME nodes and
uncertainties as connections between CE and MEG or ME
and CEG. For scalability, the footprint graph structure grows
linearly with the user input (#total nodes = #CE nodes +
#ME nodes) .

{play, playing}

{play, playing}

{select, playing} select

playing

stop

play

A

B

C

D

E {B,C}

{B,C}

{C,D}
{select, playing}

{A,C}

{A,C}

CEGMEG Code Elements

Model Elements

No Trace

Uncertain

Trace

Uncertain

Trace

Figure 2. Footprint Graph from Input

The footprint graph is the foundation for automatic trace
generation. During trace generation, the model elements in
the graph are propagated from the CEG and MEG nodes
(containing the uncertainties) to the CE and ME nodes
(connected by the certainties). There are several such
propagation rules discussed below ([16] supported only one
of them).

F. Propagation Rules for Reducing Uncertainty

Consider the example in Figure 2 once again. The first
input resulted in meg(A, {select, playing})implying that

A must implement either select and/or playing. Then the
third input resulted in no-trace(play, A) and no-

trace(playing, A). So if A is supposed to be implementing
{select, playing} but A is not supposed to implement
playing then clearly A must be implementing select – the
only remaining model element in the MEG. Recall that the
MEG defines a constraint over multiple model elements
where at least one of these model elements has to be
implemented by the code element. Uncertainties in a MEG
can thus be resolved (or reduced) by eliminating those model
elements that are implemented by the code:

if no-trace(m, c)

 forall ceg:CEG where c in ceg.{c*}

 ceg.{c*} := ceg.{c*}-c

 forall meg:MEG where m in meg.{m*}

 meg.{m*} := meg.{m*}-m

G. Propagation Rules for Suggesting Trace

Uncertainties in a CEG are resolved similarly. For
example, the first input also resulted in ceg(playing,

{A,C}) implying that playing was supposed to be
implemented in either A and/or C. Since playing was
excluded from code element A, the CEG is left with only one
code element, namely C. This remaining code element must
be implementing playing for CEG to be satisfied.

if ceg.{c*}.size=1 then

trace(ceg.m, ceg.{c*}.first)

remove ceg

if (meg.{m*}.size=1) then

trace(meg.{m}.first, meg.c)

remove meg

Figure 3 depicts the footprint graph after the application
of the propagation rules discussed above. Note that the
certainty increased as the links between MEs and CEs
increased while uncertainty decreased (fewer CEG and MEG
nodes). The propagation rules are applied for as long as
possible. The order in which the rules are applied is
irrelevant.

H. Uniqueness

We previously discussed that the components in
diagrams typically form perspectives. For example, the
components in a component diagram form a perspective
because each component is expected to contribute a unique
capability to the system not contributed by another
component of the same perspective. Or each transition in
Figure 1 contributes a unique behavior to the system not
contributed by another transition of the same figure.
Knowledge on perspectives is very useful for identifying
additional propagation rules [16]. Yet, we previously made
the trivializing assumption that all model elements in every
perspective must contribute something unique. We discussed
earlier that this assumption is not always true due to the level
of granularity in the source code. The uniqueness property is
thus an optional input that would help improve the reasoning
about uncertainties if provided.

{play, playing}

{play, playing}

select

playing

stop

play

A

B

C

D

E {B,C}

{B,C}

{select, playing}

{A,C}

CEGMEG

Trace

No Trace
Uncertain

Trace

Uncertain

Trace

Code Elements Model Elements

Figure 3. Footprint Graph after Propagation Rules

We thus added the ability to define uniqueness for CEG
and MEG. For example, the third input {stop} implAtMost
{C,D} could be annotated with the “unique” property. An
engineer would do so if she is certain that stop is
implemented in either C and/or D; and that some of this
implementation is unique to stop (i.e., not shared with other
model elements of the same perspective such as play,
playing, or select).

If the ceg(stop, {C,D}) has the uniqueness property
then a code element can be removed in two ways: 1) by a no-
trace between the mode element and the code element or 2)
by the code element being shared among multiple model
elements. Shared code is code that is implementing multiple
model elements. Consequently, shared code is not uniquely
implemented by a single model element. A model element is

unique to a code element or it has the potential to be unique
if: (1) the code element implements at most the model
element, and (2) the model element is contained in every
MEG referenced by the code element.

To understand this, pay attention to the two MEG nodes
in Figure 3. The meg(C, {select, playing}) was added

by input 1 and the meg(C, {play, playing}) was added by
input 2. It is incorrect to simply intersect the two sets to
determine relationship. Thus while the two MEGs intersect
in {playing}, this does not allow us to conclude that C must
be implementing playing (although this is indeed correct in
this example due to other input). However, the intersection
does allow us to reason about the unique relationship of a
code element.

If C were implemented by playing then both MEGs
would be satisfied and playing would uniquely implement C.
However, if select was implemented by C then only the first
MEG would be satisfied. Thus, to satisfy both MEGs the
code element would also have to be implementing a model
element in the second MEG. In this case, the code element
would be shared. So, while we do not know who is
implemented by C, we do know that only playing could be
uniquely implemented by C. Consequently, C cannot be used
to satisfy the uniqueness property of the ceg(stop, {C,D})
which requires stop to implement unique code in C and/or D.
Therefore, C can be removed and the only remaining code
element D must be the unique implementer of stop (for the
CEG to be satisfied). We thus may include stop in D and we
may safely exclude all other model elements of the same
perspective from D. because any one of them implemented by
D would violate the uniqueness property of the CEG. A
simple property of uniqueness thus may have strong
implications on traceability reasoning (reducing uncertainty).
We omitted to algorithms due to brevity.

I. Correctness Constraints

Input given by the engineer may be partially/fully
generated by hand and may be based on potentially outdated
documentation or second-hand information (i.e., from a
previous project members). It is important to provide
correctness checks based on the consistency of the input.
Fortunately, not every input combination is valid and our
approach identifies four forms of input inconsistencies that
indicate incorrect input. Do note that consistency does not
imply correctness; however, with increasing quantity of input
it becomes increasingly unlikely that the input remains
consistent, especially if the input is provided by different
engineers. The following demonstrates how our graph
structure supports correctness checking.

(1) Every MEG must have at least one model element:

0.

sizemeg
MEGmeg

A MEG is created if a code element is known to include
one or more model elements (e.g., recall implAtLeast). Thus,
it is invalid to have all model elements removed from a
MEG. For example, such a violation occurs with the
following input:

Input 4: {select} implNot {A}

Recall from Figure 3 that the meg(A, {select,

playing}) from input 1 was previously reduced to

trace(select, A) because playing is not implemented

by A. If now select is also not implemented by A then the
MEG is left without a model element. In this case, input 1
could no longer be satisfied. Note that it is typically easy to
see when two inputs conflict but it is hard to see conflicts
among three or more inputs. The example above is a conflict
among inputs 1, 2, and 4 and not obvious to identify despite
the small size of the illustration.

(2) Every CEG must have at least one code element:

0.

sizeceg
CEGceg

A CEG is created if a model element is known to be
implemented by one or more code elements. It is invalid to
have all model elements removed from a CEG. Such a
violation occurs with the input:

Input 5: {playing} implNot {C}

Recall from Figure 3 that the ceg(playing, {A,C})
from input 1 was previously reduced to
trace(playing,C) because playing was not implemented

by A. If now playing is also not implemented by C then the
CEG is left without a code element.

(3) Every model element must be imp. by some code:
Even if no CEG or MEG is violated, we must still make

sure that every model element is implemented by some code
(recall that our approach is applicable only for solution
elements which are implemented in the code). This check is
particularly useful for those model elements in perspectives
for which no input was defined.

(4) A code element cannot be implementing and not
implementing a model element at the same time:

A CE node contains the certainties of the input and the
resolved uncertainties of the CEG and MEG nodes. These
certainties should not conflict such that a code element be
implementing and not implementing the same model
element. Obviously, saying {play} impl {A} and {play}
implNot {A} produces this kind of error. Note that our work
in [16] supported this last correct constraint; however, none
of the others.

J. Granularity Constraints

While software development standards mandate the
establishment of traces between model and code, they do not
define at what level of granularity (detail) these traces should
be generated. For example, if the code is implemented in
Java then the engineer has the choice to establish traceability
between the model elements and the Java classes or the
model elements and Java methods. It is also possible to
establish the traceability to Java packages or its individual
lines of code.

Obviously, the level of granularity vastly affects the cost
of trace generation. In [17], we determined on three case
studies (ArgoUML [36], Siemens Route Planning [22],
Video on demand client [12]) that the input quantity of the
model-to-class mappings was almost 10 times less than the
input quantity of the model-to-method mapping; but 10

times more than the model-to-package mapping. This
represents a significant cost factor since this ratio is roughly
equivalent to the effort.

However, in [17], was discussed that a coarser
granularity resulted in quality loss because functionality was
grouped together that was separated on a finer granularity
(i.e., we found a 16% increase in the false positives rate of
traces based on their overlap on Java methods versus Java
classes). Obviously, what granularity rate to choose depends
on the needs of the traces and the effort one is willing to
spend. But in the three case studies we evaluated, we found
that the return on investment flattens out significantly when
the granularity was finer than implementation classes (i.e.,
traces between model and methods/lines of code cost much
more than was gained in quality).

Previously, we argued that the granularity should be
staged depending on the importance of the model element.
One may start off by defining the granularity on a coarser
level (e.g., model to Java classes) and then refine key areas
to a finer level of granularity (e.g., model to Java methods).
Here we propose an additional avenue because we found that
it is possible to define granularity constraints that tell (in
some cases) and suggest (in other cases) which code
elements to refine.

(1) Every correctness constraint a granularity constraint:
It must be mentioned that any of the four correctness

constraints discussed above could be caused by coarse
granularity. Recall that input 4 {select} implNot {A}
caused a correctness violation because the code element
excluded both model elements select and playing of the
MEG. But what if code element A was too coarse grained and
should have been broken down into methods, say A1 and A2.
The following input, on a finer level of granularity, resolves
the conflict:

Input 1: {select, playing} implAtLeast {A1, C}

Input 4: {select} implNot {A2}

Correctness violations indicate problems where the input
cannot be reconciled. Granularity issues thus may cause
correctness violations because they might group code
elements that should not belong together. Note that it is not
necessary to refine the granularity level of all code elements.
The correctness constraint identified the code element A as
the offending place. A selected refinement of just A is thus
sufficient to resolve the problem if it is the result of a
granularity problem. Of course, some input may be incorrect
irrespective of the granularity. Changing the granularity there
would not resolve the problem.

(2) Every model element should have unique code:
Ideally every model element of a perspective should have

unique code not shared with any other model element of the
same perspective – if the level of granularity is fine enough.
For example, the VOD system violated this constraint
because the select model element was in fact invoking the
play model element (i.e., select automatically started the
movie if successful). The input below does not have a
correctness violation but it does have a granularity warning:

Input6: {select,playing}implExactly{A,B,C}(unique)

Input7: {play,playing} implExactly {B,C}(unique)

This input expects unique code elements for select,
play, and playing. However, play won’t find unique code
in either B or C. This issue is not a correctness error but an
indication that the granularity of either {B} or {C} is wrong
and may need to be refined. Not all granularity warnings can
be resolved. We found situations where features in source
code were interwoven to such a point where it was
impossible to separate them.

(3) Every code element group with the uniqueness
property should have unique code:

This applies to those CEG that have the uniqueness
property. The uniqueness property implies that some but not
necessarily all of the code elements must implement the
model element uniquely.

(4) Every model element group with the uniqueness
property should have unique code:

Same as granularity constraint (3) but for MEGs.

K. Completeness Constraints

Input that is correct is not necessarily complete. Recall
that our input language allows for two degrees of
uncertainties – partiality and cluster uncertainties. The
propagation rules discussed above demonstrated how some
uncertainties can be resolved. Yet, it must be stressed that the
propagation rules must adhere to the logical consequences of
the input. Likely not all input uncertainty can be resolved
and it is useful to quickly identify those model elements
and/or code elements that are still incomplete. For a model
element to be complete, it must have traces and no-traces to
all code elements:

Cmtracenomtracemcomplete #)(#)(#)(

The completeness of a model element can be determined
for every model element separately. However, to determine
the unique versus shared property of code, all code elements
implementing a model element must be complete also. A
code element implementing a model element m is complete
if all other model elements of the same perspective P-m are
either defined as trace or no-trace. Of course, if other model
elements are tracing then the code element is shared;
otherwise it is unique to the model element m.

V. VALIDATION

Our approach was evaluated in terms of its correctness,
scalability, and effectiveness. The following presents results
on four case studies (ArgoUML [36], Siemens Route
Planning [17], Video on demand client [12], and USC Inter-
Library Loan), the largest of which was the ArgoUML with
over 28,000 methods in well above 1000 Java classes. The
case studies involved a range of modeling perspectives
(requirements, class diagrams, statechart diagrams, data flow
diagrams) and two programming languages (Java, C++).

A. Correctness

The approach’s correctness was evaluated informally by
engineers (Siemens) and through extensive manual testing.
In addition, we pair wise evaluated all combinations of the

four types of input (implAtLeast, etc…). Every input
describes a relationship between a set of model elements and
a set of code elements. Between any two inputs, the model
elements of the one input may be a subset of the model
elements of the other input – or it may be a superset,
intersection, or not overlapping at all. Similarly, there are 4
scenarios on how the code elements of two inputs may
overlap. Consequently, there are 4 * 4 * 5 * 5 = 400 possible
input scenarios for two inputs. This evaluation confirmed
that our approach produces correct results. However, it also
allowed us to understand some of its limitations –
particularly during constraint checking while deciding what
is incorrectness and what is granularity; and during the
resolution of constraint violations.
Due to the combinatorial explosion of multiple inputs (n
inputs overlap in n

2
 ways) it was impractical to provide

“potential” feedback on incorrectness. An earlier version
generated hundreds of potential errors about the ArgoUML
system. In this paper, we thus defined correctness constraints
that are guaranteed to be correct and we measured the
success rate based on the 400 possible input scenarios.
There, we found that 29% of all scenarios resulted in
conflicts. Thus, given any two incorrect input rules, there is
a 29% likelihood of us catching it.

Fortunately, here the combinatorial explosion is to our
advantage. There are 100 pair wise relationships among 10
inputs and each pair wise relationship has a 29% of catching
incorrectness. This observation of course assumes that all
input scenarios are equally likely and they all contribute new
facts – neither of which is true. However, this observation
provides us with the confidence that incorrectness is more
likely to be detected the more input is provided. On the four
case studies, we found it virtually impossible to come up
with a complete input that is internally inconsistent. The only
exception was incorrect but consistent input. If an engineer
has an incorrect but consistent understanding of the model-
to-code mapping then no incorrectness may ever be detected.
This case is rather unlikely if multiple engineers are involved
in the creation of the input and/or if legacy input is being
reused. Also, generated traces are potentially incorrect. As
such there could be missing traces (false negatives) and
existing but wrong traces (false positives) – depending on the
correctness of the input. If the input is guaranteed to be
correct then our approach (1) will refine traces correctly
and (2) will not generate incorrectness errors. However,
depending on the level granularity, our approach may not
correctly identify which code is uniquely implementing a
model element.

B. Scalability

The growth of the footprint graph is polynomial with the
size of the model and code. A graph contains one node per
code element and as many CEG and MEG as there are model
elements and code elements per input. In the most extreme
case, every input is about every model element and every
code element. In this extreme case, the size of the graph will
grow to:

)#(#*### MCinputMCgraphofsize

Which is the complexity O (#input * (#M + #C)) where
#input represents the quantity of input, #M represents the
number of model elements, and #C represents the number of
code elements. In theory each input could be about all code
elements and model elements but in practical cases we found
that they are only about a small subsets of them. The largest
systems we analyzed, the ArgoUML system, had well above
30,000 nodes (most of them being code elements at the
granularity of methods) but our tool required less than a
minute to convert the input into the footprint graph and
propagate the rules for 38 requirements.

C. Effectiveness

Obviously, no single input resolves uncertainty. It is the
combination of multiple inputs that does. We thus studied
the effectiveness of any combination of 2 rules (out of the
400 possible input scenarios) in resolving uncertainties.
Figure 4 demonstrates, for example, that two implExactly
inputs (left) are twice as effective as two implAtLeast inputs
in reducing/resolving uncertainties. On the other side,
through the case studies we observed that implAtLeast rules
are much easier to generate by the engineer than implExactly
rules. To date, we have not been able to measure this
cost/benefit trade-off. It is future work to find out whether,
say, two inputs with uncertainties is more likely to be correct
than a single input without uncertainties. In the same context,
it would be interesting to find out whether input with
uncertainties is proportionally cheaper to generate than input
without uncertainties (i.e., proportionally to the
completeness).

0%

10%

20%

30%

40%

50%

60%

70%

80%

ex
ac

tly
-e

xa
ct
ly

ex
ac

tly
-a

tL
ea

st

ex
ac

tly
-a

tM
os

t
ex

ac
tly

-N
ot

at
Le

a
st
-a

tL
ea

st

at
Le

a
st
-a

tM
os

t
at

M
o
st
-N

ot

at
M

o
st
-a

tM
os

t
at

M
o
st
-N

ot
N
ot

-N
ot

Figure 4. Effectiveness of Input in Reducing

Uncertainties

Figure 4 also implies that the careful selection of input
rules is as important as deciding on input types. For example,
the maximum effectiveness of the implAtLeast inputs is
hardly less than the minimum effectiveness of the
implExactly input. Note that an input is less effective if it
repeats some known facts. For example, if two inputs
produce 4 CEG but two of these CEGs overlap then the input
is repeating facts. Consequently, more input does not
necessarily translate into more completeness. To this end,
our approach reveals where more input is needed by
investigating the MEG and CEG nodes (these nodes contain
the uncertainties).

We also measured the relative importance of refinement
(propagation rules) to reduce uncertainty and identify
incorrectness. We found that refinement helped detecting
14% more incorrectness during the pair wise comparison.

D. Resolving Incorrectness and Granularity

A largely unsolved problem is that of resolving
incorrectness and granularity problems. We can identify the
input that is responsible for incorrectness and granularity
problems. But this alone is not sufficient for the engineer to
understand why there is a problem. It remains future work to
provide support for resolving incorrectness and granularity
problems.

VI. OPEN ISSUES

This work is limited to architectural model elements that
are implemented in code. However, there are many other
kinds of traceability that involve architecture models.
Architects may need traceability between views; traceability
to requirements; traceability to a design. There are subtleties
in the kinds of traceability: an element may depend upon
another; an element may implement another; an element may
refine another. These kinds of traceability concerns are out of
the scope of this work but are the focus of our future work.
Also future work is an evaluation of our approach for
different levels of input correctness and completeness; as
well as scalability with increasing input sizes.

VII. RELATED WORK

Research on traceability has progressed significantly and
researchers have been developing automated approaches that
go far beyond simple “recording and replaying” of trace
links (which is still the level of support in many commercial
tools). One of the earliest technologies for recovering
requirements to code traces is Information Retrieval (IR) [9,
13] which identifies trace links based on naming similarities.
Today, however, the traceability research goes beyond
requirements-to-code traceability. There are many other
kinds of approaches for the recovery of different types of
trace links such as code and models [2, 18, 29], code and
documentation [27], architecture and test cases [28],
architecture and code [30], or features and code [11].
Researchers have proposed various techniques and heuristics
to support the automation of trace recovery. Examples
include event-based approaches [7], information retrieval [9,
13], feature location techniques [24], process-oriented
approaches [34] scenario-based techniques [15], or rule-
based methods [37]. This list of technologies recovers certain
types of traces, for certain types of artifacts, at certain times.
Although advances have been made to automatically recover
links, trace capture remains a human-intensive activity [20,
26, 31]

The approaches of Haumer et al. [21], Jackson [23], and
Cox-Delugach [10] constitute a small sample of manual
traceability techniques. Some of them infer traces based on
keywords whereas others use a rich set of media (e.g., video,
audio, etc.) to capture and maintain trace rationale. Concept
analysis has been used in concert with manual input to
provide a structured way of grouping traces. These groupings

can then be formed into a concept lattice that is similar in
nature to our footprint graph – but not as scalable [24].
Pinheiro and Goguen [33] approached traceability by
devising an elaborate network of trace dependencies and
transitive rules among them to support requirements
traceability. Their approach, called TOOR, addresses
traceability by reasoning about technical and social factors.
Their approach emphasizes on requirements. Antoniol et al.
discuss a technique for automatically recovering traceability
links between object-oriented design models and code based
on determining the similarity of paired elements from design
and code [2]. Spanoudakis et al. [37] have contributed a rule-
based approach for automatically generating and maintaining
traceability relations (between organizational models
specified in i* and software systems models represented in
UML). In the Goal-Centric Traceability (GCT) approach,
Cleland-Huang et al. model non-functional requirements and
their interdependencies as soft-goals in an Interdependency
Graph. In their approach a probabilistic network model is
used to retrieve links between classes affected by a
functional change and elements within the graph [8]. A
forward engineering approach is taken by Richardson and
Green [35] in the area of program synthesis. Traceability
relations are automatically derived between parts of a formal
specification and parts of the synthesized program.

This proposed work is not the first work that recognizes
the value in combining model dependencies (some limited
types thereof) [8, 14]. However, to the best of our knowledge
thus far nobody has tried to integrate and reason about many
dimensions of model dependencies in such a rigorous,
formal, and precise manner as we are proposing here. Also,
the issues of uncertainties discussed in this work have not
been explored in related work to the best of our knowledge.
It is also important to note that traceability approaches
typically do not provide explicit support for trace utilizations
such as impact or coverage analysis. They rather provide
general purpose features to create reports or query
traceability information. Researchers have been proposing
techniques to improve support for important tasks such as
analyzing change impacts [1, 4, 25, 38] or understanding the
conflict and cooperation among requirements [19]. There is
however very little literature on the quality implications of
trace links during such utilizations. As elsewhere, the utility
of trace links decreases when the trace quality decreases.
However, today, we have no understanding on how strong
this effect is.

VIII. CONCLUSION

This paper presented an extension to our approach to
trace discovery and validation. Our approach expects the
engineer to define assumptions on architectural model-to-
code traces (with incompleteness and uncertainties) and it
then analyzes the correctness of these assumptions and is
capable of resolving uncertainties. It must be noted that our
approach does not “invent” traces. It discovers them based
on the logical consequences of the assumptions provided.
The ability to detect incorrectness protects the engineer from
making errors. This is particularly important if the input was
generated “after the fact” (after key people have moved on or

may have forgotten vital details), if the input was generated
by different people (with inconsistent interpretations of
traces), or if legacy traceability was reused (previously
generated but no longer up-to-date) – as is typical during
software maintenance.

IX. ACKNOWLEDGEMENT

This work was funded by the Austrian Science Fund
(FWF) under agreement P23115-N23.

REFERENCES

[1] F. Abbattista, F. Lanubile, G. Mastelloni, and G. Visaggio. An

experiment on the effect of design recording on impact analysis. In

Int. Conf. on Software Maintenance, p. 253-259, September 1994.

[2] G Antoniol. Design-code traceability recovery: selecting the basic

linkage properties. Science of Computer Programming, 40(2-3):213–
234, July 2001.

[3] A. Bianchi, A.R. Fasolino, and G. Visaggio. An exploratory case

study of the maintenance effectiveness of traceability models. In
Proc.8th Int. Workshop on Program Comprehension, p. 149-158,

Ireland, 2000.
[4] L. C. Briand, Y. Labiche, and L. O’Sullivan. Impact analysis and

change management of UML models. In Proceedings of the Int.

Conf. on Software Maintenance, p. 256, USA, 2003.
[5] L. C. Briand, Y. Labiche, L. O’Sullivan, and M. M. SÃ³wka.

Automated impact analysis of UML models. J. Syst. Softw.,

79(3):339–352, 2006.
[6] S. Clarke, W. Harrison, H. Ossher, and P. Tarr. Subject-oriented

design: towards improved alignment of requirements, design, and

code, SIGPLAN Notes, 34(10):325–339, 1999.
[7] J. Cleland-Huang, C. K. Chang, and M. Christensen. Event-Based

traceability for managing evolutionary change. IEEE Trans. Softw.

Eng., 29(9):796–810, September 2003.
[8] J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhanskaya, and

S. Christina. Goal-centric traceability for managing non-functional

requirements. . 27th Int. Conf. on Software Engineering, ICSE, p.
362–371, May 2005.

[9] J. Cleland-Huang, R. Settimi, E. Romanova, B. Berenbach, and

S. Clark. Best practices for automated traceability. Computer,
40(6):27–35, June 2007.

[10] L. Cox, D. Skipper, and Harry S. Delugach. Dependency analysis

using conceptual graphs. In 9th Int. Conf on Conceptual Structures,
2001.

[11] B. Dagenais, S. Breu, F. W. Warr, and M. P. Robillard. Inferring

structural patterns for concern traceability in evolving software. In

Proceedings of the 22nd Int. Conf. on Automated software

engineering, ASE ’07, p. 254–263, New York, NY, USA, 2007.

ACM.
[12] K. Dohyung. MPEG player.

http://peace.snu.ac.kr/dhkim/java/MPEG/.

[13] C. Duan and J. Cleland-Huang. Clustering support for automated
tracing. In Proceedings of the 22nd Int. Conf. on Automated software

engineering, ASE ’07, p. 244–253, New York, NY, USA, 2007.

ACM.
[14] M. Eaddy, A. V. Aho, G. Antoniol, and Y-G. Gueheneuc.

CERBERUS: tracing requirements to source code using information

retrieval, dynamic analysis, and program analysis. In The 16th Int.
Conf. on Program Comprehension, p. 53–62, Amsterdam, The

Netherlands, June 2008.

[15] A. Egyed. A Scenario-Driven approach to trace dependency
analysis. IEEE Trans. Softw. Eng., 29(2):116-132, 2003.

[16] A. Egyed. Resolving uncertainties during trace analysis. In 12th Int.

Symposium on Foundations of Software Engineering,
(SIGSOFT/FSE), p. 3–12, New York, USA, 2004. .

[17] A. Egyed, S. Biffl, M. Heindl, and P. Grünbacher. Determining the

cost-quality trade-off for automated software traceability. In 20th Int.
Conf. on Autom. Softw. Eng., p. 360–363, USA,2005. .

[18] A. Egyed and P. Grünbacher. Automating requirements traceability:

Beyond the record & replay paradigm. 17th Int. Conf. on Automated
Software Engineering, p. 163–171. 2002.

[19] A. Egyed and P. Grünbacher. Identifying requirements conflicts and

cooperation: how quality attributes and automated traceability can
help. IEEE Software,21(6):50–58, 2004.

[20] O.C.Z. Gotel and C.W. Finkelstein. An analysis of the requirements

traceability problem. In Proceedings of IEEE Int. Conf. on
Requirements Engineering, p. 94-101, USA, 1994.

[21] P. Haumer, K. Pohl, K. Weidenhaupt, and M. Jarke. Improving

reviews by extending traceability. In Proceedings of the 32nd
Annual Hawaii Int. Conf. on System Sciences, 1999.

[22] M. Heindl and S. Biffl. A case study on value-based requirements

tracing. In Proceedings of the 10th European software engineering
Conf., ESEC/FSE-13, p. 60-69, New York, NY, USA, 2005. ACM.

[23] J. Jackson. A keyphrase based traceability scheme. In IEE

Colloquium on Tools and Techniques for Maintaining Traceability
During Design, p. 2/1-2/4, December 1991.

[24] R. Koschke and J. Quante. On dynamic feature location. In

Proceedings of the 20th IEEE/ACM Int. Conf. on Automated
software engineering, page 86, Long Beach, CA, USA, 2005.

[25] M. Lee, A. J. Offutt, and R. T. Alexander. Algorithmic analysis of

the impacts of changes to Object-Oriented software. In Proceedings
of the Technology of Object-Oriented Languages and Systems,

TOOLS ’00, page 61, Washington, DC, USA, 2000. IEEE Computer
Society.

[26] M. Lindvall and K. Sandahl. Practical Implications of Traceability.

1996.
[27] A. Marcus and J. I. Maletic. Recovering documentation-to-source-

code traceability links using latent semantic indexing. In

Proceedings of the 25th Int. Conf. on Software Engineering, ICSE
’03, p. 125–135, Washington, DC, USA, 2003.

[28] H. Muccini, P. Inverardi, and A. Bertolino. Using software

architecture for code testing. IEEE Transactions on Software
Engineering, 30(3):160–171, March 2004.

[29] G. C. Murphy, D. Notkin, and K. Sullivan. Software reflexion

models: bridging the gap between source and high-level models. In
Proceedings of the 3rd Symposium on Foundations of software

engineering, p. 18–28, New York, NY, USA, 1995.

[30] L. G. Murta, A. Hoek, and C. M. Werner. Continuous and automated
evolution of architecture-to-implementation traceability links.

Autom. Software Eng., 15(1):75–107, 2008.

[31] C. Neumuller and P. Grunbacher. Automating software traceability
in very small companies: A case study and lessons learned. In 21st

Int. Conf. on Automated Software Engineering, p. 145–156, Sep.

2006.
[32] D. L. Parnas. On the criteria to be used in decomposing systems into

modules. Commun. ACM, 15(12):1053–1058, 1972.

[33] F. A. C. Pinheiro and J. A. Goguen. An Object-Oriented tool for
tracing requirements. IEEE Softw., 13(2):52–64, 1996.

[34] K. Pohl. PRO-ART: enabling requirements pre-traceability. In

Proceedings of the Second Int. Conf. on Requirements Engineering,
p. 76–84, April 1996.

[35] J. Richardson and J. Green. Automating traceability for generated

software artifacts. In Proceedings of the 19th IEEE Int. Conf. on
Automated software engineering, ASE ’04, p. 24–33, Washington,

DC, USA, 2004. IEEE Computer Society.

[36] J. Robins. ArgoUML. http://argouml.tigris.org/.
[37] G. Spanoudakis, A. Zisman, E. Pérez-Miñana, and P. Krause. Rule-

based generation of requirements traceability relations. Journal of

Systems and Software, 72(2):105–127, 2004.
[38] P. Tonella. Using a concept lattice of decomposition slices for

program understanding and impact analysis. IEEE Transactions on

Software Engineering 29(6):49

	I. Introduction
	II. Illustration
	III. RELATIONSHIPS BETWEEN MODEL AND CODE
	IV. Language for expressing Traceability
	A. Defining Precise Trace Information
	B. Expressing Uncertainty
	C. Defining Basic Uncertainty
	D. Defining Common Uncertainty Constructs
	1) ImplAtLeast Input:
	2) ImplAtMost Input:
	3) ImplNot Input:
	4) ImplExactly Input

	E. Footprint Graph
	F. Propagation Rules for Reducing Uncertainty
	G. Propagation Rules for Suggesting Trace
	H. Uniqueness
	I. Correctness Constraints
	J. Granularity Constraints
	K. Completeness Constraints

	V. Validation
	A. Correctness
	B. Scalability
	C. Effectiveness
	D. Resolving Incorrectness and Granularity

	VI. Open Issues
	VII. Related Work
	VIII. Conclusion
	IX. Acknowledgement
	References

